Sponsors / Partners

Accenture Microsoft NYSE Shell Salesforce AAAS Science Red Herring Fortune CNN Time Magazine
 

2004 World Technology Awards Winners & Finalists

Lydia Kavraki

Please describe the work that you are doing that you consider to be the most innovative and of the greatest likely long-term significance.

Lydia Kavraki credits her parents with instilling in her a desire to understand how the world works when she was still a schoolgirl on the Greek isle of Crete. They didn't want her to think only mechanically, however; they also taught her that "technology should serve humans, and in the best possible way."

Kavraki was exposed to computers from an early age because of her father's work in the airline industry. By 18, she'd heard the siren song of computer science. But as a graduate student at Stanford University, in the heart of Silicon Valley, she looked beyond theory and code to the world in which humans and computers coexist. Computers alone were too remote, impersonal. No stereotypical computer geek, this Greek; Kavraki can cite the ancients, and defers to Heraclitus on the constant nature of change.

"I like interactions with the physical world, I love geometry," Kavraki says. "I like physical things." Thus she turned to practical challenges. She started to think about how robots are programmed to navigate. The problem is a tricky one. Say you want a robot to travel from point A to B, and the robot has 10 moving parts. There are a vast number of combinations in which it could use those parts to mount steps, turn corners, and so on—a number so large even a powerful computer would have trouble finding the optimal solution. Kavraki's answer was to randomly sample the range of poses open to the robot, create snapshots of the machine in motion at various stages along its path, and then connect those snapshots as efficiently as possible into a kind of road map. The computer does not search every possible combination, and may miss the best solution every now and then. But the process is fast and reliable, and that's crucial for operating robots in real time.

Kavraki's work is rapidly becoming the stuff of textbooks; meanwhile, several major companies, including General Motors, are interested in applying her method to industrial problems. But creating smarter robots for the assembly line is just a stepping stone, as far as Kavraki is concerned. Ultimately, she says, "I would like to see a robot that would help an elderly person get out of bed safely, or help the disabled to get around."

Kavraki, 35 and an associate professor at Rice University, is now looking for ways to model biological molecules to aid in the hunt for new medicines. Chemicals rotate, waggle, stretch, and flex—much like articulated robots. Instead of navigating through corridors, a drug often needs to wedge itself snugly into the groove on a protein molecule. Kavraki hopes that her technique will help search through drug candidates more rapidly. "I like to work on problems that will generally improve the quality of our life," Kavraki says.

(from http://www.popsci.com/popsci/science/article/0,12543,364616,00.html)

Brief Biography

Lydia Kavraki is an associate professor in the Department of Computer Science at Rice University. She also holds a joint appointment with the Department of Bioengineering at Rice and the Graduate Program in Structural and Computational Biology and Molecular Biophysics at the Baylor College of Medicine. She is also affiliated with the M.W. Keck Center for Computational Biology and the MD/PhD program at the Baylor College of Medicine.

Kavraki's research is in the areas of bioinformatics, robotics and physical algorithms. She leads the Physical and Biological Computing Group at Rice.

Kavraki has served in the program committees of several bioinformatics, robotics, and AI conferences (RECOMB, IROS, IJCAI, AAAI, ICRA, WAFR, ACM SCG) and co-organized and co-chaired the 3rd International Workshop on the Algorithmic Foundations of Robotics. Kavraki has authored 8 book chapters, more than 80 peer-reviewed scientific papers and is the co-editor of one book. She is also contributing to a robotics textbook to be published in 2004.

Kavraki's work has been recognized with the ACM Grace Murray Hopper Award. Kavraki was also was fortunate to receive the NSF CAREER Award (Early Career Development Award), a Sloan Research Fellowship and the Early Academic Career Award from the IEEE Robotics and Automation Society. Kavraki was selected as one of the Top 100 Young Innovators by MIT's Technology Review Magazine and was featured among the "Brilliant 10" investigators of the Popular Science Magazine.

Kavraki was inducted to the College of Fellows of the American Institute for Medical and Biological Engineering (AIMBE) in 2004.

(from http://www.cs.rice.edu/~kavraki/)